The state of neuropsychological test norms for Spanish-speaking adults in the United States

Alejandra Morlett Paredes, Amanda Gooding, Lidia Artiola i Fortuny, Monica Rivera Mindt, Paola Suárez, Travis M. Scott, Anne Heaton, Robert K. Heaton, Mariana Cherner & María J. Marquine

To cite this article: Alejandra Morlett Paredes, Amanda Gooding, Lidia Artiola i Fortuny, Monica Rivera Mindt, Paola Suárez, Travis M. Scott, Anne Heaton, Robert K. Heaton, Mariana Cherner & María J. Marquine (2020): The state of neuropsychological test norms for Spanish-speaking adults in the United States, The Clinical Neuropsychologist, DOI: 10.1080/13854046.2020.1729866

To link to this article: https://doi.org/10.1080/13854046.2020.1729866

Published online: 06 Mar 2020.

Submit your article to this journal

Article views: 171

View related articles

View Crossmark data
The state of neuropsychological test norms for Spanish-speaking adults in the United States

Alejandra Morlett Paredes, Amanda Gooding, Lidia Artiola i Fortuny, Monica Rivera Mindt, Paola Suárez, Travis M. Scott, Anne Heaton, Robert K. Heaton, Mariana Chernera and María J. Marquine

Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Private Practice, Tucson, AZ, USA; Department of Psychology and Latin American and Latina/o Studies Institute, Fordham University, New York, NY, USA; Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; VA Palo Alto Health Care System, Sierra Pacific MIRECC, Palo Alto, CA, USA

ABSTRACT

Objective: The present review paper aimed to identify published neuropsychological test norms developed for Spanish-speakers living in the United States (U.S.).

Methods: We conducted a systematic review of the literature via an electronic search on PubMed using keywords “Normative data,” “Neuropsychological test,” “norms,” “Hispanic/Latinos,” “Spanish Speakers,” and “United States.” We added other studies and published manuals as identified by citations in papers from the original search.

Results: Eighteen sources of normative data for Spanish-speakers in the U.S. were identified. Of the 18 citations identified, only four provide normative data on comprehensive batteries of tests for Spanish-Speakers. Two of these are based on persons living in the southwest of the U.S., who tend to be of Mexican origin. Overall, a number of the studies are focused on older persons and although the majority include participants with wide ranges of education, participants in the ends of the education distribution tend to be underrepresented.

Conclusion: Here we provide a detailed description of the neuropsychological normative data currently available for Spanish-speakers living in the U.S. While there has been increased attention towards developing norms for neuropsychological batteries in Spanish-speaking countries (e.g., Latin America and Spain), there is still an urgent need to standardize neuropsychological tests among diverse groups of Spanish-speaking adults living in the U.S. The present review presents a list of norms for U.S.-dwelling Spanish-speakers, thus providing an important tool for clinicians and researchers.

KEYWORDS

Hispanic/Latino; neuropsychological tests; norms; Spanish-speakers
Introduction

Hispanics/Latinos/as/x are the largest ethnic minority group in the United States (U.S.; 18.1%). They are also one of the fastest growing populations in the nation, with a projected increase from 58.9 million in 2017 to 119 million by 2060 (U.S. Census Bureau, 2018a). The term "Hispanic or Latino," as defined by the U.S. Office of Management and Budget (U.S. Census Bureau, 2018b), refers to persons of Cuban, Mexican, Puerto Rican, South or Central American, or other Spanish culture or origin regardless of race. We acknowledge that there are different terms used to refer to this heterogeneous group, including Hispanic, Latino/a or Latinx (a gender-neutral/non-binary term to identify a person of Latin American origin or descent; Merriam-Webster, 2018), and for simplicity we will use the term Latino in this paper.

While there are salient cultural aspects that characterize the Latino collective experience, there is great diversity within Latino populations. They comprise multiple national origins, sociopolitical and economic statuses, racial groups, immigration statuses, acculturation patterns, educational backgrounds and language uses (Guarnaccia et al., 2007; Llorente, 2008; Pontón & Ardila, 1999; Rivera Mindt, Byrd, Saez, & Manly, 2010; Rivera Mindt et al., 2008; Salinas, Edgar, Puente, & Ferraro, 2016). Most Latinos in the U.S. are of Mexican origin/descent (63% of the total Latino population), followed by 9% Puerto Ricans and 4% Cubans (Census Bureau, 2017). Predominantly, Latinos (particularly those of Mexican origin) live in the West and South of the U.S. with Texas, California, New Mexico, Arizona and Nevada being the states with the largest Latino concentrations (Stavans, 2018). However, a ample number of Latinos also reside in the East side of the U.S., such as New Jersey, New York, and Florida, where most Latinos are of Caribbean descent (Census Bureau, 2017). Among Latinos living in the U.S. over the age of 5 years, 72.4% speak Spanish at home (Census Bureau, 2017). Among those who speak Spanish, 57.5% also report speaking English “very well.” This number suggests a large proportion of Spanish-speakers in the U.S. are bilingual with potentially different levels of proficiency in both their native Spanish and English languages (Ryan, 2013).

Despite the large number of Spanish-speakers in the U.S., there is a paucity of available neuropsychological test normative data for this population. It is well understood that simply translating cognitive tests from English to Spanish does not adequately consider important cultural, linguistic, and demographic factors that impact test performance (Ardila, Rodriguez-Menéndez, & Rosselli, 2002; Arnold, Montgomery, Castañeda, & Longoria, 1994; Brickman, Cabo, & Manly, 2006; Buré-Reyes et al., 2013; Diaz-Venegas, Downer, Langa, & Wong, 2016; Gasquoine, 2001; Heaton, Ryan, & Grant, 2009; Puente & Ardila, 2000). The application of normative data based on samples that closely resemble some of the main characteristics of the population assessed is of great importance for accurate diagnoses of (both acquired and developmental) neurocognitive impairment. Most neuropsychological tests have historically been developed and standardized in a subsample of the world population, mostly with individuals from well-educated majority populations within contemporary Western, industrialized, wealthy, and democratic backgrounds (Henrich, Heine, & Norenzayan, 2010). Thus, what we know about cognition and its disorders within other countries and cultures is
not only limited but, unquestionably, culturally biased (Ardila, 1996; Fletcher-Janzen, Strickland, & Reynolds, 2000; Uzzell, Pontón, & Ardila, 2013).

A number of studies highlight how the mismatch between the normative group and the population being evaluated can affect diagnostic accuracy in cognitive disorders. In one recent study, application of North American norms to groups from Morocco, Spain and Colombia resulted in misdiagnosis of impairment up to 20% of the time (Daugherty, Puente, Fasfous, Hidalgo-Ruzzante, & Pérez-Garcia, 2017). Cherner and colleagues (2007) demonstrated elevated rates of neurocognitive impairment on memory tests in a sample of healthy U.S.-dwelling Spanish-speakers when using published norms for non-Latino English-speakers compared population-specific norms. Misdiagnosis was particularly salient among participants with less than six years of education (Cherner et al., 2007) but was observed across the education range. Similarly, Casaletto et al. (2016) found high rates of neurocognitive impairment (27–31%) on the National Institutes of Health Toolbox Cognition Battery (NIHTB-CB) among healthy adult Spanish-speakers when applying demographically-adjusted norms that were developed with non-Latino English-speakers. Together, this literature strongly suggests that population-specific norms yield more accurate determinations of neurocognitive impairment, pointing to the importance of applying norms established on samples that resemble the population being assessed (Rivera Mindt et al., 2010, 2019).

A recent survey (Rabin, Paolillo, & Barr, 2016) polling U.S. and Canadian members of the International Neuropsychological Society (INS) and the National Academy of Neuropsychology (NAN) identified some of the most frequently used neuropsychological assessment instruments. The majority of these instruments lack appropriate normative data for Spanish-speaking populations in the U.S. Furthermore, some of the most frequently reported challenges associated with selection of testing instruments included a “lack of adequate normative data” (33.5% of survey respondents) and that “tests are culturally biased” (11.5%). Relatedly, 15.9% of respondents rated “lack of norms for additional demographic groups” as a challenge to data interpretation (Rabin et al., 2016).

For those instruments where norms for Spanish-speaking adults are not available, clinicians in the U.S. are forced to either rely on existing non-Latino norms for data interpretation, use norms collected in other Spanish-speaking countries, such as México and Spain, develop personalized estimates through clinical experience (i.e., “clinical judgment”), and/or use raw scores for interpretation without a normative comparison. Although not meant to be a comprehensive list, examples of test batteries that were standardized and normed in other Spanish-speaking countries include the Bateria Woodcock-Muñoz which included samples from urbanized areas in Costa Rica, México, Peru, Puerto Rico and Spain (Muñoz-Sandoval, Woodcock, McGrew, Mather, & Ardoiño, 2009); the Spanish Multicenter Normative Studies in Spain (Neuronorma Project; (Peña-Casanova et al., 2009), the NEUROPSI in México (Ostrosky-Solis, Ardila, & Rosselli, 1999), the Boston Diagnostic Aphasia Exam (BDAE) norms from Rosselli and colleagues in Colombia (Rosselli, Ardila, Florez, & Castro, 1990) and the norms from 11 Latin American countries presented by Arango-Lasprilla and colleagues (Guárdia-Olmos, Peró-Cebollero, Rivera, & Arango-Lasprilla, 2015). For an overview of
additional instruments and norms for other underrepresented minority populations, such as African American (AA) and Asian/Asian-American (Asian) populations, please see Rivera Mindt et al. (2019). All of these resources could be useful for those working with culturally/linguistically diverse older adults.

Norms developed for Spanish-speakers in countries other than the U.S. undoubtedly have been a valuable resource for clinicians and researchers in the U.S. and abroad, though to our knowledge this is the first publication providing a comprehensive list of such resources. The main purpose of the present review was to identify norms that have been developed specifically for Spanish-speaking adults living in the U.S., and to describe the sample characteristics and test batteries for easy reference.

Methods

In an effort to compile a comprehensive list of available norms, we employed a systematic review of the literature to identify published norms that were developed for Spanish-speakers in the U.S. We conducted an electronic search on PubMed, using keywords “Normative data,” “Neuropsychological test,” “norms,” “Hispanics/Latinos,” “Spanish-Speakers”, and “United States.” This effort resulted in 59 citations from which relevant studies were selected for review. From that sample, 18 citations were identified as sources of normative data for Spanish-speaking adults living in the U.S. In addition, we added a battery that provides normative data in a sample of Spanish-speakers living in the U.S-Mexico border region, which is published in a manual (Artiola I Fortuny, 1999) resulting in a total of 19 studies for inclusion in this study.

Results

Table 1 provides a summary of the normative studies among Spanish-speakers in the U.S (including both comprehensive test batteries and single tests). A number of these studies consisted of co-normed batteries of neuropsychological tests (Artiola I Fortuny, 1999; Casaletto et al., 2016; Hall et al., 2018; LaRue, Romero, Ortiz, Chi Lang, & Lindeman, 1999; O’Bryant et al., 2018; Pontón et al., 1996; Stricks, Pittman, Jacobs, Sano, & Stern, 1998) as opposed to single-test norms (Acevedo et al., 2000; Cherner et al., 2007; González, Mungas, & Haan, 2005; González, Mungas, Reed, Marshall, & Haan, 2001; Jacobs, Winston, & Polanco, 1997; Marquez de la Plata et al., 2009; Marshall, Mungas, Weldon, Reed, & Haan, 1997; Menon, Hall, Hobson, Johnson, & O’Bryant, 2012; Strutt, Scott, Shrestha, & York, 2011; Strutt et al., 2012). Below is a description of each battery (7 in total) that has available norms for Spanish-speaking adults in the U.S. Information on the single-test norms (11 in total) are available in Table 1, but will not be explained in the text below.

Pontón and colleagues (1996) provided normative data on the Neuropsychological Screening Battery for Hispanics (NeSBHHis), which measures a range of domains, including attention/concentration, psychomotor speed, nonverbal reasoning, visuospatial functions, language, and learning and memory (see Table 1 for specific tests). The sample consisted of 342 participants from different community centers of the greater Los Angeles area, with wide ranges of ages (16-75 years) and education (1-20 years).
Table 1. Normative studies conducted on Spanish-speaker adults living in the U.S. from most recent to oldest.

<table>
<thead>
<tr>
<th>Study</th>
<th>Geographic Area</th>
<th>Sample Size (#)</th>
<th>Age (Mean and SD)</th>
<th>Education (Mean and SD)</th>
<th>Gender % female</th>
<th>Stratification/adjustment of norms</th>
<th>Co-normed</th>
<th>Language (%)</th>
<th>Bilingualism</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall et al., 2018 (TMAANS)</td>
<td>Texas/New Mexico border</td>
<td>136</td>
<td>53.61 (8.89)</td>
<td>8.2 (3.97)</td>
<td>78.76%</td>
<td>Education and language of administration</td>
<td>Yes</td>
<td>ES: 50.73%</td>
<td>SS: 49.26%</td>
<td>Not reported</td>
</tr>
<tr>
<td>O’Bryant et al., 2018 (TMAANS)</td>
<td>Texas</td>
<td>797</td>
<td>60.4 (8.6)</td>
<td>9.9 (4.6)</td>
<td>73.40%</td>
<td>Age and Education</td>
<td>Yes</td>
<td>ES: 48.30%</td>
<td>SS: 51.69%</td>
<td>Not reported</td>
</tr>
<tr>
<td>Casaletto et al., 2016 (NIHTB-CB)</td>
<td>10 U.S. testing sites</td>
<td>408</td>
<td>44.1 (16.7)</td>
<td>10.7 (4.3)</td>
<td>65%</td>
<td>Age, Education and Gender</td>
<td>Yes</td>
<td>SS: 68%</td>
<td>ES: 12.8% All tested in S SS:100%</td>
<td>Not reported</td>
</tr>
<tr>
<td>Strutt et al., 2012</td>
<td>Texas</td>
<td>157</td>
<td>61.7 (7.68)</td>
<td>11.8 (3.65)</td>
<td>97%</td>
<td>Age and Education</td>
<td>Yes</td>
<td>SS: 100%</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Menon et al., 2012</td>
<td>Texas/New Mexico border</td>
<td>446</td>
<td>CLOX 1: 58.6 (11.4) CLOX 2: 58.5 (11.2)</td>
<td>CLOX 1: 12.2 (3.8) CLOX 2: 12.1 (4.1)</td>
<td>74.2%</td>
<td>Age/ Age, education and gender</td>
<td>No</td>
<td>Not reported</td>
<td>Collected</td>
<td>1) The CLOX</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Strutt et al., 2011</td>
<td>Texas</td>
<td>130</td>
<td>Basic Ed: 59.3 (5.74)</td>
<td>Basic Ed: 8.59 (2.44)</td>
<td>60.7%</td>
<td>Education</td>
<td>No</td>
<td>SS: 100%</td>
<td>Not reported</td>
<td>1) The Rey 15-item Memory Test</td>
</tr>
<tr>
<td>Marquez de la Plata et al., 2009</td>
<td>Texas, Colombia, Spain</td>
<td>250</td>
<td>College Ed: 59.8 (6.06) Nondemented: 72.9 (6.3)</td>
<td>College Ed: 14.7 (1.3) Nondemented: 4.8 (3.8)</td>
<td>58.0%</td>
<td>Age and Education</td>
<td>No</td>
<td>SS: 100%</td>
<td>Not reported</td>
<td>1) The Texas Spanish Naming Test</td>
</tr>
<tr>
<td>Cherner et al., 2007</td>
<td>U.S./Mexico border regions of Arizona and California</td>
<td>127</td>
<td>Demented: 77.8 (7.5) Demented: 1.6 (1.8)</td>
<td>Demented: 9.75 (4.35)</td>
<td>64.50%</td>
<td>Education</td>
<td>No</td>
<td>SS: 100%</td>
<td>Not reported</td>
<td>1) Brief Visuospatial Memory Test-revised</td>
</tr>
<tr>
<td></td>
<td>Sacramento</td>
<td>1,276</td>
<td>70.3 (6.8)</td>
<td>7.8 (5.4)</td>
<td>57.40%</td>
<td>Age, Education and gender</td>
<td>No</td>
<td>ES: 46.39%</td>
<td>SS: 53.60%</td>
<td>Not reported</td>
</tr>
<tr>
<td></td>
<td>Sacramento</td>
<td>1,686</td>
<td>EE: 69.73 (6.63) SS: 70.76 (7.01)</td>
<td>EE: 10.79 (4.33) SS: 4.68 (4.38)</td>
<td>56.9%</td>
<td>Age, Education and Language</td>
<td>No</td>
<td>ES: 42.52%</td>
<td>SS: 57.37%</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Geographic Area</th>
<th>Sample Size (#)</th>
<th>Age (Mean and SD)</th>
<th>Education (Mean and SD)</th>
<th>Gender % female</th>
<th>Stratification/ adjustment of norms</th>
<th>Language (%)</th>
<th>Bilinguism</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>González et al., 2001</td>
<td>Sacramento</td>
<td>801</td>
<td>69.7 (7.2)</td>
<td>8.4 (5.1)</td>
<td>58.70%</td>
<td>Age, Education and Gender</td>
<td>No</td>
<td>NLW: 13.98%</td>
<td>Collected<sup>1</sup> 1) The Spanish-English Verbal Learning test (SEVLT)</td>
</tr>
<tr>
<td>Acevedo et al., 2000</td>
<td>Miami Beach, Florida, and Aventura, Florida</td>
<td>2332</td>
<td>ES: 69.1 (6.0)</td>
<td>SS: 64.9 (7.7)</td>
<td>ES: 74.0%</td>
<td>L(E): 39.82%</td>
<td>No</td>
<td>ES: 62%</td>
<td>1) Animals, Vegetables, and Fruits</td>
</tr>
<tr>
<td>Artiola I Fortuny, 1999</td>
<td>Mexico/U.S. border and Spain</td>
<td>390</td>
<td>Mexico/U.S. border: 42.1 (13.5)</td>
<td>Mexico/U.S. border: 9.6 (6.1)</td>
<td>Age and Education</td>
<td>No</td>
<td>Yes</td>
<td>SS</td>
<td>Not reported 1) Figure memory test</td>
</tr>
<tr>
<td>La Rue et al., 1999</td>
<td>Bernalillo County, New Mexico</td>
<td>797</td>
<td>NLW (Men): 74.1 (5.8)</td>
<td>NLW (Women): 73.8 (5.9)</td>
<td>Age, Education and Ethnicity</td>
<td>Yes</td>
<td>Tested in E: 79%</td>
<td>1) Fuld Object Memory Evaluation</td>
<td></td>
</tr>
<tr>
<td>Stricks et al., 1998</td>
<td>Northern Manhattan</td>
<td>996</td>
<td>Tested in E: 75.8 (6.6)</td>
<td>Tested in S: 74.7 (6.2)</td>
<td>Age and Education</td>
<td>Yes</td>
<td>Tested in E: 58.23%</td>
<td>1) Mini Mental State Examination</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Geographic Area</th>
<th>Sample Size (#)</th>
<th>Age (Mean and SD)</th>
<th>Education (Mean and SD)</th>
<th>Gender % Female</th>
<th>Stratification/adjustment of norms</th>
<th>Co-normed Language (%)</th>
<th>Bilingualism Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobs et al., 1997</td>
<td>Northern Manhattan, New York</td>
<td>50</td>
<td>Form 1: 74.29 (5.75)</td>
<td>6) The Pin Test Form 1: 63%</td>
<td>Age and Education No</td>
<td>Form 1 SS: 67% Form 2 SS: 69%</td>
<td>Collected</td>
<td>9) Form C and D of the original Benton Visual Retention Test 10) Rosen Drawing Test 11) Target-detection tasks</td>
</tr>
<tr>
<td>Marshall et al., 1997</td>
<td>Sacramento and Winter California</td>
<td>753</td>
<td>Form 2: 75.85 (6.06)</td>
<td>Form 2: 10.62 (4.36)</td>
<td>Form 2: 65%</td>
<td>Form 2 SS: 65%</td>
<td>ES: 69.85%</td>
<td>Not reported 1) The Mini-Mental State Examination</td>
</tr>
<tr>
<td>Pontin et al., 1996 (The NeSBHS)</td>
<td>Santa Ana, Pasadena, Montebello, Pacoima, and Van Nuys, California</td>
<td>300</td>
<td>38.4 (13.5)</td>
<td>10.7 (5.1)</td>
<td>60%</td>
<td>Age, Education and Gender Yes</td>
<td>SS: 30.14% SS: 30.70% Bilingual: 30%</td>
<td>Collected</td>
</tr>
</tbody>
</table>

Notes: EE = English Speaking; SS = Spanish Speaking; E = English; S = Spanish; NLW = Non Latino White; L = Latino; TMAANS = Texas Mexican American Adult Normative Study; NIHTBCB = National Institutes of Health Tool Box-Cognitive Battery; NeSBHS = Neuropsychological Screening Battery for Hispanics.

1Individuals included in this study elected to be tested in Spanish, but were not objectively assessed for English versus Spanish language proficiencies. As a result, this study may represent individuals with fairly heterogeneous levels of Spanish proficiency and bilingualism, which can impact NIHTB-CB test performances.

2A self-report questionnaire was used to assess linguistic fluency and proficiency.

3Bilinguality in English and Spanish, defined by self report. Results in this study indicate that bilingual subjects had slightly poorer performance than monolinguals, but these differences were not present after adjusting for MMSE score in the SEVLT.

4Nearly all of their Latino participants were bilingual (self report). No analyses were performed to see if bilingualism had an effects on any of tests in this study.

5Self-report. Within the population studied, degree of bilingualism did not significantly impact test performance.

6Self-report. No analyses were performed to see if bilingualism had an effects on any of tests in this study.
Sixty-two percent of the participants identified Mexico as their country of origin, 15% came from Central America, and 23% came from other countries. Importantly, this study collected information on the average duration of residence in the U.S. and country of origin, which are variables sometimes not reported by other studies. The majority had lived at least 15 years in the U.S. (55%), and 45% of the subjects had less than six years of residence in this country. Participants were mostly monolingual Spanish-speaking (70%), with 30% being bilingual. Besides reporting the typical main effects of age, education, and gender, significant interaction effects between demographic factors on a number of neuropsychological tests were investigated (e.g., age X education X gender, and age X education). Means and SDs are reported by gender, age (16-19, 30-39, 40-49, and 50-75) and years of education (+/- 10 years).

Stricks and colleagues (1998) provide normative data on a neuropsychological battery assessing cognitive functions typically affected in dementia such as orientation, learning and memory, attention, verbal and non verbal reasoning, and visoperceptual skills (see Table 1 for specific tests) in 416 older (60+ years) Spanish-speakers, who were part of a larger community-based, epidemiologic study of dementia in the New York City area. The majority of Spanish-speakers in this study were of Caribbean origin (i.e., Dominican Republic, Puerto Rico, and Cuba). This study investigated both univariable effects of demographics (i.e., age, education, and gender), and their interaction on test performance. Norms for Spanish-speakers were stratified by two education groups (less than 9 years and 9 years or more) and three age ranges (60-69, 70-70 and 80+).

Artiola I Fortuny (1999) developed the Batería Neuropsicológica en Español, which includes eight neuropsychological tests assessing attention, language, executive functions, and verbal and visual learning and memory (see Table 1 for a list of specific tests). The sample consisted of 185 Spanish-speakers from the U.S./México border region and 205 from Spain. Of relevance for purposes of the present review, the border region sample included participants ages 18 to 65+ and with 0 to 16+ years of education (75% female). Participants were recruited from a predominantly suburban population, and the sample consisted of individuals who lived in the U.S., Mexico, or both countries. They were primarily individuals of Mexican origin who had immigrated to the U.S. or resided in the towns of Nogales or Agua Prieta, Sonora, and had a high degree of familiarity with the culture and society of the U.S. Norms are provided separately for the two samples, stratified by spans of age (18-34, 35-44, 45-54, 55-64, >65) and years of education (0-2, 3-5, 6-8, 9-11, 12, 13-15, <16).

LaRue and colleagues (1999) provided preliminary normative tables for a battery of neuropsychological tests measuring attention, immediate and secondary memory, learning, psychomotor speed and cognitive flexibility in a sample of older adults (Latino and non-Latino) from New Mexico. The majority of Latino participants (90%) were born in the U.S. and identified themselves as Spanish American (83%), with 10% describing themselves as Mexican-American, and 5% as Latino/Native American. Of the 359 Latino participants included in the study, 79% elected to complete the cognitive tests in English, 14% in Spanish, and 7% in a combination of English and Spanish. Significant predictor variables included in this study were ethnicity, sex, education, age, depression (GDS total score), and health (number of self-reported medical illnesses) on almost every neuropsychological test. La Rue provides preliminary
normative tables for Latino older adults stratified by age (65-74 years and 75-97 years) and education (0-6 years, 7-9 years, 10-12 years, and > 12 years).

Casaletto and colleagues (2016) developed norms for the Spanish version of the National Institutes of Health Tool Box-Cognitive Battery (NIHTB-CB; Casaletto et al., 2016). This 30-min computerized battery includes seven measures and assesses six neurocognitive domains (i.e., Attention, Executive Functions, Episodic Memory, Processing Speed, Working Memory, and Language; see Table 1). The NIHTB-CB Toolbox normative Spanish-speaking sample of adults consisted of 408 neurologically healthy adults (ages 18–85 years; 65% female) from Atlanta, Chicago–Oak Brook, Cincinnati, Columbus, Dallas, Los Angeles, Minneapolis, Philadelphia, Phoenix, and Saint Louis. The majority of participants who completed the battery self-identified as Latino White (77%). The sample included individuals with fairly heterogeneous levels of Spanish proficiency and bilingualism (participants were not objectively assessed for English versus Spanish language proficiencies). Casaletto and colleagues (2016) developed three types of scores in this battery for each of the seven NIHTB-CB tests and three composites (Fluid, Crystallized, Total Composites): normalized but uncorrected scaled scores, age-corrected scaled scores, and fully demographically corrected T-scores, which considered age, education and sex. The development of demographically-adjusted norms considered both linear and nonlinear effects of demographic factors.

Two studies have been published as part of the Texas Mexican American Adult Normative Study (TMAANS) initiative (Hall et al., 2018; O’Bryant et al., 2018), which include a number of tests covering visuospatial/constructional abilities, attention, language, executive functioning, and immediate and delayed memory domains. TMAANS includes data from Mexican American middle-aged and older adults recruited from three different cohorts (i.e., TARCC, HABLE, and Project FRONTIER). There is significant overlap on the neurocognitive test batteries across cohorts, but the batteries are not identical (see O’Bryant et al., 2018 for details). The first TMAANS study (O’Bryant et al., 2018) included 797 Mexican-Americans aged 40+ from Texas (73.4% female, 52% Spanish-speaking). Data on memory tests were available from HABLE (n = 387) and TARCC (n = 266) cohorts, except data on the Rey Auditory Verbal Learning Test (RAVLT) were available from HABLE only. The study presented normative data for English and Spanish-speakers together, stratified by education (0-6, 3-9, 6-12 and 12+) and age (40-60 and 61+) for most tests in the battery (see Table 1 for a full list of tests), except for tests of word reading, which differed by language use (i.e., Word Accentuation Test for Spanish-speakers and the American National Reading Test for English-speakers). Multivariable linear regression models on each test were performed to examine the linear, main effects of age, education, gender and language on each test (i.e., interactions among these factors were not examined). Education and age were the two demographic factors that generally accounted for the greatest amount of variance in neuropsychological test scores. Language of administration was significant for the Trail Making Test-A, the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) List Learning and CERAD List Recall, but normative data were not provided separately for Spanish-speakers.

The second TMAANS project included 136 Latinos (67 primarily Spanish-speaking and 69 primarily English-speaking; for overall cohort: age = 40-79, Education = 0-18,
79% female) recruited as part of the Project FRONTIER from a rural population in the Texas – New Mexico border region (Hall et al., 2018), who had completed the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) - Form A. To avoid dilution of the sample size into smaller subgroups, stratification was conducted for demographic factors that accounted for 10% or more of the variance. For this reason, only education was included in normative corrections for most RBANS subtests (Education ranges: 0-6, 7-11, and 12+), with separate norms being provided by language only for the Digit Span subtest.

Table 1 provides further details about the above-mentioned seven studies. In addition, Table 1 includes information on single-test norms for U.S.-dwelling Spanish speakers.

Discussion

While considerable efforts have been undertaken over the past two decades to develop neuropsychological test normative data for Spanish speakers living in the U.S., these data are limited, particularly when compared to those available for English-speakers in the U.S. Of the 18 sources of normative data for Spanish-speaking adults in the U.S. that were identified, only four provide normative data separately for Spanish-speakers on batteries that assess multiple domains of cognitive functioning. Besides these four studies, an additional three studies provide norms for primarily English- and primarily Spanish-speaking Latinos together on a battery of tests (Hall et al., 2018; LaRue et al., 1999; O’Bryant et al., 2018). Co-norming of tests is important as it increases clinical utility of results and the applicability of norms (Kern et al., 2008; Rodriguez-Jimenez et al., 2012; Shi et al., 2015). Yet, findings from the present literature review indicate a relative paucity of co-normed batteries that allow for comparison of performance across multiple domains of cognitive functioning among Spanish-speakers in the U.S. Furthermore, while the existing batteries cover a variety of domains, they include normative data on a limited number of tests of executive function and visuo-spatial skills.

The majority of available batteries with norms specifically for Spanish-speakers are based on persons living in the southwest of the U.S., who tend to be of Mexican origin (Artiola I Fortuny, 1999; Pontón et al., 1996; Strutt et al., 2012). Only one of the studies including a co-normed battery was conducted in the northeast (Stricks et al., 1998), and only one included participants from various regions in the U.S. (Casaletto et al., 2016). This indicates a clear gap in the availability of norms for Latinos from Central and South America living in the U.S. Further, a number of these studies are focused only on older persons (LaRue et al., 1999; Stricks et al., 1998; Strutt et al., 2012), with others including broader – though limited – adult age ranges (Artiola I Fortuny, 1999; Casaletto et al., 2016; Pontón et al., 1996). In general, these studies include participants with wide ranges of education (1-20 years), though many note that representation of participants at the ends of the education distribution tends to be low. As such, current co-normed batteries for U.S. Spanish-speaking adults may be particularly inappropriate for individuals with less than 6 or greater than 18 years of education. Even though there are two studies (Artiola I Fortuny, 1999; Pontón et al., 1996) that include participants with less than one year of education, these samples are still small and collapsed together within the norms of those with 6 or less
years of education. Relatedly, no norms have been specifically developed for Spanish-speakers living in the U.S. who are illiterate.

In addition to the limited availability of co-normed data, an important limitation that applies to nearly all normative studies among Spanish-speakers in the U.S. are the relatively small samples sizes, which may influence the robustness of the norms and limit power to investigate interactions among demographic variables (e.g., age X education X gender) on test performance. A number of the studies include both monolingual and bilingual Spanish speakers in their sample (Artiola I Fortuny, 1999; González et al., 2001; LaRue et al., 1999; Pontón et al., 1996; Stricks et al., 1998), which may indeed be representative of Latinos in the U.S., yet most do not report on the impact that bilingualism might have on neuropsychological tests performance. In recent years, there has been an increase in research investigating the effect of bilingualism on cognitive and linguistic processing (Bialystok, 2018; Lehtonen et al., 2018). Yet, a significant barrier to research is the absence of proper assessment indicating the degree of bilingualism of each individual. A majority of the existing 18 sources of normative data found in this review, do not report on bilingualism (Acevedo et al., 2000; Casaletto et al., 2016; Cherner et al., 2007; González et al., 2002; Hall et al., 2018, Marshall et al., 1997; Marquez et al., 2009; O’Bryant et al., 2018; Stricks et al., 1998; Strutt et al., 2011; 2012) and those that do report on it rely entirely on self-report questionnaires to collect this information (González et al., 2001; Jacobs et al., 1997; La Rue et al., 1999; Menon, Hall, Hobson, Johnson, & O’Bryant, 2012; Pontón et al., 1996).

Bilingualism is a complex experience that could be shaped by social, cultural, and contextual factors (Anderson, Mak, Chahi, & Bialystok, 2018). Luk and Bialystok (2013) described language experience as a continuum, meaning that individuals are not categorically bilingual or monolingual. The ambiguity that surrounds bilingualism creates an important methodological issue in research studies specifically when trying to develop appropriate norms for bilinguals. Resolving this methodological problem of how to characterize participants on the multidimensional continuum of the bilingual experience could contribute to a theoretical discussion of the nature of language experience, and measurement issues of quantifying this experience. One relatively simple and feasible approach to quantify degree of English fluency among Spanish-speakers has been previously presented by Suarez and colleagues (2014), and is based on developing a ratio of words produced in verbal fluency tasks in Spanish and English. The incorporation of this type of measure and other structured instruments quantifying bilingualism into normative studies, will be important to identifying measurable and replicable ways to consider bilingualism in the development and application of norms.

Relatedly, few studies provide specific information on other culturally relevant variables, which might have important influences on test performance among Spanish-speakers in the U.S. Examples include degree of acculturation, country of birth/origin and country where education was obtained, years of school completed in the U.S., or years of residence in the U.S. (Acevedo et al., 2000; Artiola I Fortuny, 1999; Cherner et al., 2007; Flores et al., 2017; Hall et al., 2018; O’Bryant et al., 2018). As noted above, most studies were conducted in the southwest of the U.S., which contains a primarily Mexican-American population (Artiola I Fortuny, 1999; González et al., 2001; 2005; Hall et al., 2018; LaRue et al., 1999; O’Bryant et al., 2018; Pontón...
et al., 1996) and thus norms resulting from these studies should be used with caution in other Spanish-Speaking Latino populations in the U.S. (i.e., persons from Caribbean, Central American, or South American origin; Stricks et al., 1998). Future studies with large numbers of well-characterized diverse groups of Spanish-speakers in the U.S., and which incorporate comprehensive cognitive batteries, would allow for the development of robust normative data that incorporate adjustment for important sources of neuropsychological performance variance in this population.

Conclusion

While there has been increased attention towards developing norms for neuropsychological batteries in Spanish-speaking adults in Latin America (e.g., Arango-Lasprilla, Stevens, Morlett Paredes, Ardila, & Rivera, 2017; Guárdia-Olmos et al., 2015; Rosselli et al., 1990) and Spain (e.g., Peña-Casanova et al., 2009), there is still an urgent need to standardize neuropsychological tests among diverse groups of Spanish-speaking adults living in the U.S. Future norming efforts should gather detailed culturally-relevant information (e.g., acculturation, linguistic background/proficiency, bilingualism, country where education was completed, quality of education, number of years in the U.S., among others), and examine the effects of these variables on neuropsychological test performance. Results of such studies might help guide which variables ought to be considered in the development of norms for most accurately identifying underlying brain impairment in this population. In addition, the collection of this culturally-relevant information could better help researchers and clinicians identify which norms to use for their patients and research samples.

The present review paper provides a list of published norms for neuropsychological tests for Spanish-speaking adults living in the U.S. and is part of a special issue on this topic. The articles that follow in this special issue provide results from a series of studies from the Neuropsychological Norms for the U.S.-Mexico Border Region (NP-NUMBRS) project. As part of this issue, our group presents a series of normative studies on a comprehensive neuropsychological test battery for Spanish-speaking adults living in the U.S.-Mexico border region (Diaz-Santos et al., 2020; Gooding et al., 2020; Heaton et al., 2020; Marquine, Morlett Paredes, et al., 2020; Marquine, Yassai-Gonzalez, et al., 2020; Morlett Paredes et al., 2020; Rivera et al., 2020a; Scott et al., 2020; Suarez et al., 2020a), a study that investigates the impact of English language fluency in this comprehensive battery of tests (Suarez et al., 2020b), and a study that examines the utility of this battery in detecting HIV-associated neurocognitive impairment (Kamalyan et al., 2020). Based on the present literature review and findings from the NP-NUMBRS project presented in this special issue, we provide a more detailed set of recommendations (Rivera Mindt et al., 2020b) to help advance the field of neuropsychological assessment among Spanish-speakers in the U.S., and the clinical application of neuropsychological norms in this population.

Funding

This research was supported by grants from the National Institutes of Health (P30MH62512; K23MH105297; P30AG059299, T32MH019934) and the UCSD Hispanic Center of Excellence (Health Resources and Services Administration grant D34HP31027).
References

